2018-10-08
耐高溫永磁電機關(guān)鍵技術(shù)分析
隨著永磁材料性能的不斷提高,特別是釤鈷永磁的熱穩(wěn)定性和耐腐蝕性的改善和價格的逐漸降低以及電力電子器件的進一步發(fā)展,同時,由于交流永磁電機具有體積小、功率密度高、效率高、特性好、環(huán)境適應(yīng)性好等優(yōu)點,故永磁電機在深空探測與開發(fā)領(lǐng)域已獲得越來越廣泛的應(yīng)用。耐高溫永磁電機是復(fù)雜的電磁系統(tǒng),涉及的關(guān)鍵技術(shù)包括以下方面。
1、電機多物理場分析方法
在低溫至高溫的寬溫區(qū)范圍、真空等航天惡劣環(huán)境下,永磁電機電磁參數(shù)變化很大,材料發(fā)生非線性變化,電磁場、溫度場、流體場、應(yīng)力場等各個物理場之間耦合關(guān)系更加復(fù)雜,在正常環(huán)境下可以忽略的多物理場耦合關(guān)系變得不可忽略,成為關(guān)鍵的技術(shù)難題 。電機的鐵心損耗、風(fēng)摩損耗、電機溫升不但與環(huán)境溫度和壓強密切相關(guān),而且相互影響。在真空環(huán)境中,散熱條件特殊,與相毗鄰部件的形狀及表面屬性相關(guān),熱輻射與表面溫度成非線性關(guān)系。真空至高壓強的變化影響應(yīng)力和材料特性變化,使得電機的多物理場建模難度增大。因此惡劣環(huán)境下永磁電機內(nèi)各物理場耦合關(guān)系非常復(fù)雜,研究各物理量和物理場的耦合關(guān)系及其動態(tài)變化規(guī)律非常困難 。
2、電機材料與器件特性變化規(guī)律
常規(guī)電機所用的材料,例如永磁體、電磁線和絕緣材料等,在高溫、低溫等惡劣環(huán)境下使用時會出現(xiàn)性能下降、失效、可靠性降低等問題。另一方面,高溫環(huán)境下永磁電機材料的特性變化規(guī)律復(fù)雜,在溫度范圍近 300℃時,硅鋼片的特性變化明顯,電磁線導(dǎo)電特性變化近3 倍,釤鈷永磁材料特性變化30% ,流體黏度特性變化可能達到10 倍以上,絕緣材料的導(dǎo)電特性與介電強度特性發(fā)生變化。
3、永磁電機損耗、溫升和冷卻分析
在高溫環(huán)境下,永磁電機中材料屬性發(fā)生變化,引起鐵心損耗、繞組銅損、轉(zhuǎn)子損耗均發(fā)生顯著變化。在傳熱方面,真空或電機內(nèi)部充油時傳熱方式不同,電機內(nèi)部溫度分布規(guī)律復(fù)雜; 在散熱方面,航天用電機的冷卻環(huán)境和冷卻條件受到制約,很難設(shè)計水冷、風(fēng)冷等措施,導(dǎo)致其散熱困難。當(dāng)電機工作在高溫、高速、高功率密度等極限條件下,其發(fā)熱溫升更嚴(yán)重。電機溫升過高造成永磁體出現(xiàn)不可逆失磁、漆包線絕緣層破壞甚至電機讓繞組燒毀等事故,因此,損耗與溫升的準(zhǔn)確計算是耐高溫永磁電機設(shè)計與分析的關(guān)鍵技術(shù)之一,并且電機發(fā)熱溫升也是影響電機可靠性和壽命的最主要因素。
4、電機失效機理及壽命預(yù)估方法
高溫環(huán)境下永磁電機及電子電路的發(fā)熱更容易導(dǎo)致電機及其驅(qū)動控制器的性能下降甚至失效。在電機失效機理的研究方面,主要是對絕緣層失效和永磁體失磁的研究。由于缺乏精確的老化數(shù)學(xué)模型及絕緣失效機理定量描述困難,對電機絕緣的研究一直是電機絕緣診斷技術(shù)中的難題,目前的方法主要還是通過非破壞參量來預(yù)測剩余擊穿電壓,從而評估電機的絕緣狀態(tài) 。而永磁體失磁的主要原因在于在高溫或高低溫交替環(huán)境下渦流場引起的損耗溫升,因此研究主要集中在對渦流場的計算,通過對主絕緣性能的評估,來實現(xiàn)對電機壽命的預(yù)測。
5、高低溫環(huán)境永磁電機驅(qū)動控制技術(shù)
高低溫環(huán)境下電機系統(tǒng)的器件特性和指標(biāo)變化大,電機模型與參數(shù)復(fù)雜,非線性度增加、耦合程度增加,功率器件損耗變化大,不但驅(qū)動器的損耗分析與溫升控制策略復(fù)雜,而且四象限運行控制更加重要,常規(guī)的驅(qū)動控制器設(shè)計和電機系統(tǒng)控制策略不能滿足高溫環(huán)境的要求。常規(guī)設(shè)計的驅(qū)動控制器工作在環(huán)境溫度相對穩(wěn)定條件下,而且很少考慮質(zhì)量、體積等指標(biāo)。然而在極端工況下,環(huán)境溫度在-70 ~ 180℃的寬溫區(qū)范圍內(nèi)變化,大部分的功率器件無法在此低溫中啟動,導(dǎo)致驅(qū)動器功能失效。另外受電機系統(tǒng)總質(zhì)量限制,驅(qū)動控制器的散熱性能必然要大幅度減小,這反過來影響驅(qū)動控制器的性能及可靠性。
總結(jié)
綜上所述,耐高溫永磁電機及其驅(qū)動控制系統(tǒng)的研究涉及眾多高、新技術(shù)領(lǐng)域。隨著國內(nèi)專家學(xué)者對耐高溫電機基礎(chǔ)理論的不斷完善深入,將加快建立耐高溫永磁電機的理論與技術(shù)體系; 另一方面,隨著深空、深海和深地探測與開發(fā)領(lǐng)域的不斷擴展,耐高溫永磁電機系統(tǒng)具有廣泛的應(yīng)用前景。